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The antiferromagnetic Ising model on a checkerboard lattice has an ice-like ground state manifold with
extensive degeneracy. and, to leading order inJxy, deconfined spinon excitations. We explore the role of cyclic
exchange arising at orderJxy

2 /Jz on the ice states and their associated spinon excitations. By mapping the
original problem onto an equivalent quantum six-vertex model, we identify three different phases as a function
of the chemical potential for flippable plaquettes—a phase with long range Néel order and confined spinon
excitations, a nonmagnetic state of resonating square plaquettes, and a quasicollinear phase with gapped but
deconfined spinon excitations. The relevance of the results to the square-lattice quantum dimer model is also
discussed.
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The past decade has seen a great renaissance in the study
of frustrated quantum spin systems. On the experimental
front, advances in the synthesis of magnetic oxides have
given rise to a great wealth of new frustrated materials with
highly unusual and interesting properties. And, at the same
time, highly frustrated models have become a favorite play-
ground of theorists seeking to understand unconventional
phase transitions and excitations.

Recently, it was proposed that the geometric frustration
present on the pyrochlore lattice could give rise to fractional
charges in two or three dimensions,1 in a physically realistic
model based on strong nearest neighbor repulsion close to
commensurate filling.2 The charge ordering problem consid-
ered in Ref. 1 is classically equivalent to one of Ising anti-
ferromagnetism, and in this paper we consider the simplest
possible test case for these ideas, theXXZ Heisenberg model
on a checkerboard(2D pyrochlore) lattice. We proceed by
mapping this model onto an equivalent, quantum six-vertex
model (Q6VM), and describe the nature of the ground state
and low lying spin excitations of this model as a function of
a control parameterV, which acts as a chemical potential for
those “flippable plaquettes” accessible to cyclic exchange.

We identify three different ground states, a phase with
long range Néel order, a nonmagnetic state of resonating
square plaquettes, and a partially disordered phase of “iso-
lated states” with extremely large ground state degeneracy,
referred to as the “quasicollinear” phase below. Because of
the anisotropy of the model, all spin excitations are gapped.
It is possible to identify the lowest lying excitations of the
Néel phase as spin waves, and those of the quasicollinear
phase as deconfined spinons. We also identify the special
role of the isolated states in supporting fractional excitations.
Many of these results are also relevant to the much studied
square lattice quantum dimer model(QDM).3

Model and mapping onto Q6VM: We take as a starting
point the spin-1/2 anisotropic Heisenberg model with anti-

ferromagnetic interactions,Jz, Jxy.0, in the limit Jz@Jxy
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Here the sumoki j l runs over the bonds of the 2D pyrochlore
or checkerboard lattice, shown in Fig. 1(a). In the Ising limit,
Jxy=0, this model has an extensive ground state
degeneracy—every state with exactly two up and two down
spins per tetrahedron(cross linked square) is a ground state.
For historical reasons, this is known as the “ice rules” con-
straint. Topologically, “ice” states have the structure of
closely packed loops of up and down spins, and are separated
by a gapJz from the lowest lying excited state. Flipping any

FIG. 1. (Color online) (a) The checkerboard lattice on which the
ice states, and(b) the square lattice on which the states of the
six-vertex model are defined. Any Ising state obeying the ice rules,
e.g., that shown in(a), is equivalent to(b) six-vertex model con-
figuration. In the state shown, the upper left corner has Néel order,
while the lower right corner has collinear order. Flippable
plaquettes are denoted with circles. In the case of the six-vertex
model, these have a definite sense of rotation.
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given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects(spinons),
which propagate independently.1,4 The pyrochlore(checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.

By drawing an arrow from the center of A to B sublattice
tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classicalsix vertex model(6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that(a) the
ground state manifold of the Ising model grows asW
~ s4/3d3N/4 whereN is the number lattice sites7 and (b) all
correlation functions decay algebraically.8

Up to this point, our analysis contains only classical sta-
tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finiteJxy!Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd= −
Jxy
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where the indices 1–4 count consecutive sites(either clock-
wise or anticlockwise), of an empty plaquette.6

In terms of the 6VM representation, Eq.(2) acts on a
plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette(cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.

As such, there is only one(kinetic) energy scale in the
problem, t=Jxy

2 /Jz. However in order to study the different
possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interactionV to the Q6VM
which counts the number of flippable plaquettes

H = o
h

fVsu	 lk	 u + u� lk� ud − tsu	 lk� u + u� lk	 udg,

s3d

where theu	 l and u� l states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian(3).

Our approach to determining the different phases of the
Hamiltonian(3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13

Phase diagram: We first consider the nature of the ground
state as a function the chemical potential for flippable
plaquettes,V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.

Negative values of V favor states with flippable
plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state forV→−`. The Néel state is twofold degen-
erate in the thermodynamic limit. For finiteV/ t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM(Fig. 3). We
find a single phase forV&−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value ofV,−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum(Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.

We find a single phase extending from −0.3t&Vø t, in-
cluding theXXZ point V=0. This phase terminates in the
special high symmetry pointV= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V/ t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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HRK = to
h

su	 l − u� ldsk	 u − k� ud. s4d

Following Rokhsar and Kivelson(RK),3 we can construct a
zero eigenvalue state of theHRK by taking the linear combi-
nation of all the states in a given topological sector with the
same amplitude. Since this state is annihilated by the positive
semidefiniteHRK, it must be a ground state. As in the QDM,
static correlations can be computed exactly at this point. Like
the correlation functions of the 6VM, they decay algebra-
ically with distance.

At the RK point, kinetic, and potential energy are per-
fectly balanced; in the plaquette phase kinetic energy domi-
nates, and resonating plaquettes repel one another so as gain
the maximum kinetic energy.14 The resulting state is essen-
tially a Peierls-like distortion of the RK state in which only A
(B) sublattice plaquettes resonatePhAsBd

su	 l+ u� ld. The

way in which the phase breaks lattice symmetries—it is two-
fold degenerate, and invariant under operations which map
the alternating A and B plaquette sublattice onto
themselves—suggest the plaquette phase of the Q6VM is an
Ising analog of the SU(2) valence-bond crystal of resonating
plaquettes. Such a phase has been proposed in the context of
the square lattice QDM.15 Furthermore, the ground state of
the Heisenberg-model on a checkerboard lattice is a valence
bond crystal of SU(2) singlets formed on alternate empty
plaquettes,16 with a possibility of an adiabatic continuity be-
tween the ground state of theXXZ and SU(2) symmetric
Heisenberg models.17

For V. t the ground state is the highly degenerate mani-
fold of “isolated” states with no flippable plaquettes. They
are eigenstates with 0 energy for any value ofV/ t, and be-
come the ground state forV. t.18 The prototype of an iso-
lated state is the collinear configuration shown in Fig. 1. In
this reference state all vertex arrows point from left to right
or from top to bottom. Inverting the direction of the arrows
along an arbitrary number of lines, subject to the constraint
that all of them are either horizontal or vertical, creates new
isolated states. This leads to a ground state degeneracy which
grows as 4s2p−1d for regularly shaped clusters, wherep
,ÎN. In these states, the direction of arrows along either the
horizontal or vertical lines is long-range ordered, but quan-
tum effects none the less fail to select a ground state with
finite degeneracy. We refer to this phase of the Q6VM as
“quasicollinear.” Finally, since the transition between the
quasicollinear phase and the resonating plaquette phase takes
place through the softening of specific excitation(discussed
below), we identify it as second order.

Excitations: First let us consider the nature of excitations
at fixedSz=0. A state withn flippable plaquettes has a diag-
onal matrix elementnV and is connected ton other states.
Gerschgorin’s theorem places a bounduHii −«iu,o juHij u on
the separation of theith eigenvalue«i from the diagonal
matrix elementHii . In the case in point, this bound isunV
−«iu,nt, or nsV− td,«i ,nsV+ td. The smallest energy in an
arbitrary topological sector is thus larger thanV− t, which
gives a lower bound on the value of the gap in the quasicol-
linear phase forV. t. This above argument permits a gapless
spectrum at the RK pointV= t. In fact it is possible to ex-
plicitly construct a family of states with a gap that vanishes
at the RK point, as shown in Fig. 5(a): the energy spectrum
of this particular excitation forms a continuum between 2V
−2t and 2V+2t.

Now let us consider spin excitations withSz=±1. If we
neglect virtual processes at orderJxy

2 /Jz, and the possibility
of entropic confinement at finite temperature, these propa-
gate as independent fractional excitations.1 Quantum effects
may, or may not, act to confine these excitations, depending
on the type of correlations present in the ground state they
select. The Néel ground state has a twofold ground state
degeneracy, and separating the topological defects created by
flipping a spin creates a string of unflippable plaquettes. This
leads to confinement of spinons, and the low lying spin ex-
citations of the Néel phase of our model have the same quan-
tum numbers as a spin wave. On general grounds, we expect
the same to be true of the plaquette phase.

The manifold of isolated states selected byV cansupport

FIG. 3. (Color online) Energy level diagram of the 32-site
pyrochlore-slab with periodic boundary conditions as a function of
V/ t, obtained by numerical diagonalization. We have shown the first
eight levels. Inset: the first two excited states cross atVc/ t
=−0.3437(the axes are the same as of the main plot).

FIG. 4. Estimate of the phase boundary between the Néel and
plaquette phases. Empirically, the values ofVc where the level
crossings occur scale as −0.3727+1.86N−3/2. Values are shown for
32, 36, 40, 52, and 64 pyrochlore-slab sites.
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deconfined spinons, however. Since no new flippable
plaquettes are introduced into isolated states by flipping a
single spin, and the pair of topological defects created by
flipping a single spin can be separated without creating new
flippable plaquettes, spinons are deconfined. An example of a
pair of deconfined spinon excitations is shown in Figs. 5(b)
and 5(c). For V@Jxy@ t, spinon motion is movement is con-

fined to thex and y directions, but by scattering off one
another, a pair of spinons can explore the full two dimen-
sional space of the lattice. Whether a more general class of
deconfined spinon excitation becomes possible as one ap-
proaches the RK point remains an open question. We also
note that while fixing the boundary conditions will lift the
degeneracy of the isolated state manifold, it need not affect
the arguments for spinon deconfinement presented above.

Conclusions: We have established that, as a function of
the chemical potential for “flippable plaquettes” accessible to
cyclic exchange, theXXZ Heisenberg model on a checker-
board lattice exhibits Néel, resonating plaquette and quasi-
collinear phases. If virtual processes atJxy

2 /Jz are ignored,
spinon excitations in theXXZ Heisenberg model are decon-
fined. We have shown explicitly that a subset of spinon
excitations—those associated with isolated states—remain
deconfined even when these quantum effects are taken into
account. Finally, we mention that the equivalents of both the
“leap-frog” and spinon excitations can also be constructed in
the square-lattice QDM forV. t.19
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FIG. 5. (Color online) (a) A “leapfrog” excitation in the quasi-
collinear phase. Two flippable plaquettes(denoted with circles) are
created by reversing the arrows of the collinear reference state on a
line with a single one-step kink. The motion of the pair of flippable
plaquettes is equivalent to a one-dimensional hopping model with
an energy spectrum«skd=2V+2t cosk, wherek is an effective one-
dimensional momentum.(b) and(c): The deconfined spinons in the
collinear phase(black dots). Note, that spinons hop so as to stay
within a given sublattice of the(bipartite) square lattice.
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